Summary of Lake Demands and Associated Structures:

Factors Considered for Sizing Permanent Forward Pumps

Scott Burns, Director,
Water Supply Policy Implementation

WRAC Lake Okeechobee Subcommittee August 28, 2006

Brighton Seminole Reservation Lake Okeechobee NORTHERN PALM BEACH COUNTY SERVICE AREA C-43 BASIN West Palm Beach EVERGLADES AGRICULTURAL AREA SERVICE AREA 1 WCA 1 Big Cypress Seminole WCA 2A Reservation VCA 2B I-75 CANAL WCA 3A LEC SERVICE Ft Lauderdale TAMIAMI CANAL LEC SERVICE AREA 3 WCA 3B Miami **EVERGLADES** NATIONAL PARK Homestead Florida Bay 20 Miles

Location of direct and indirect users of Lake Okeechobee

Lake Okeechobee Service Area (LOSA) Sub-Basin Boundaries

S-351: Hillsboro/North New River Canal

LOSA Sub-basin: "E'

Acres Irrigated: 230,380

Forward Pump:

Temp. for drought; 600 cfs

Urban Basin:

Service Area 2 (Broward)

Ave. Dry Flow:

S-352 & C-10A: West Palm Beach Canal; L-8

LOSA Sub-basin: "C"

Acres Irrigated: 131,127

Forward Pump: Temp. for drought; 400 cfs

Urban Basin: Service Area 1 (Palm Beach)

Ave. Dry Flow: 340 cfs (S-352) cfs (C-10A)

S-354: Miami Canal

LOSA Sub-basin: "F"

Acres Irrigated: 115,751

Forward Pump: Temp. for

drought; 400 cfs

Urban Basin: Service Area 3 (Miami-Dade)

Ave. Dry Flow: 450 cfs

S-77 & C-5A: Caloosahatchee Basin

LOSA Sub-basin: "H"

151,059 **Acres Irrigated:**

Forward Pump:

Urban Basin:

Ave. Dry Flow:

NA

Lee County

1,200 cfs (S-77) cfs (C-5A)

G-207 & G-208: Indian Prairie Basin

LOSA Sub-basin: "I"

Acres Irrigated: 6,463

Forward Pump:

Temp. for drought; 400 cfs

Urban Basin:

Ave. Dry Flow:

100 cfs

NA

Factors Considered for Sizing Pumps

- Large sub basins with multiple users versus basins that have existing infrastructure to attain water when Lake is low
- Demands that would occur at lake elevations < 10.2 ft</p>
- Configuration of existing structures
- Feasibility of pump type and location relative to the dike
- Costs versus probability of use

Phase 1: Feasibility Evaluation

- Identified 8 structures for potential permanent forward pumps
- Estimated target capacities using historical flow data and operations staff knowledge
- Established a preliminary cost target of \$100 million
- Estimated a low Lake stage elevation of 7.5 ft for determination of pump types and capacities

Calculating Water Demands for Sizing Forward Pumps: Agr.

- Determine supplemental irrigation demands of sub-basin
 - Use regional model to calculate evapotranspiration demand
- Subtract applicable water shortage cutbacks
 - Lake Okeechobee Water Shortage Management Plan
- Consider range of demands when pumps are operating versus costs

135 MGD

210 MGD

205 MGD

Indirect Users of Lake Okeechobee: Average Dry Season Flows to the LEC Service Areas from the WCAs and/or the Lake*

* Million gallons per day; January through May

sfwmd.gov

LEC Urban Deliveries from Lake

Average dry season deliveries

■ Palm Beach 210 cfs

■ Broward 325 cfs

■ Miami-Dade 315 cfs

- Sources of supplemental water supply:
 - Water Conservation Areas; 'regulatory floors'
 - Lake, 'pass through deliveries'
 - Water quality issues

Simultaneously Meeting LOSA and LEC Urban Areas

- Low potential for simultaneous demands on Lake
 - 1989-1990 Drought: deliveries not made to S. Dade
 - 2000-2001 Drought: deviation granted for WCA1
- Lag time between low groundwater and saltwater intrusion
 - **■** Biscayne MFL:180 days

Simultaneously Meeting LOSA and LEC Urban Areas (cont.)

- Capacity of the forward pumps will be greater at higher lake stages
- LEC water sources are becoming more diversified through alternative supply development
- Potential for temporary deviation from WCA regulatory floor constraint in emergency conditions
- Cost of additional 850 cfs capacity when history shows little potential for need
- Additional regional water storage projects being developed to reduce competition from the Lake

Next Steps to Refine Pump Sizes

- Use TSP model results and revised water shortage management plan to calculate flows
- Gather shareholder input on pump locations and capacities
- Evaluate feasibility of flexible pump capacities
- Policy direction from Board regarding costs and risks

